Downwelling Irradiance has become a routine measurement.
OCR504 has the issue of Temperature Effect on Dark signal (TED)

- $Ed(\lambda) = \text{Slope} \times (\text{Counts} - \text{Dark}) \times \text{Im}(\lambda)$
- If **Dark** is under-estimated \rightarrow Constant value at depth
- If **Dark** is over-estimated \rightarrow Fast decrease at depth
LAB TEST 1

- Lab Test on OCR-Solo which has an inner temperature sensor to acquire sensor temperature (Ts)
 - Merging the cold sensor (4C) to a warm waters (30C controlled by thermostat)

- TED was confirmed to include three processes
 1. **Dark Current Response (to sensor temperature)**
 \[
 \text{Dark} = A + B \times T_s
 \]
 2. **Delay effect**
 \[
 T_w^*(t) = T_w(t+\Delta t)
 \]
 3. **Heat conduction**
 \[
 \frac{dT_s}{dt} = k^* (T_w^* - T_s)
 \]
1. **Dark Current Response (to sensor temperature)**

\[
\text{Dark} = A + B \times Ts
\]

A and B are different for different channels on the same OCR.

B can be positive or negative, which means dark current could be positively or negatively proportional to the sensor temperature.
2. **Delay effect**

\[T_{w^*}(t) = T_w(t + \Delta t) \]

\(\Delta t = 60 \text{ sec for OCR-Solo} \)

Assumed to be Constant for the same model of sensor (same materials and same structure)
LAB TEST 1

3. Heat conduction

\[
\frac{dT_s}{dt} = k^* (T_w^* - T_s)
\]

\(k = -0.003 \text{ /s for OCR-Solo}\)

Assumed to be Constant for the same model of sensor (same materials and same structure)
RemA sensors, to obtain an constant delay time coefficient (Δt) and response coefficient (k)
CORRECTION IDEA

1. Fixing delay time coefficient (Δt = 54s) and response coefficient (k = 0.19/min)

2. Retrieving A and B for each channel of each sensor based on night profiles

3. Tracking drift in A over time with near-1000 m data (e.g. drift mode)

3. Applying A, B, Δt, k and Temperature profile to correct all OCR504 dark values.
CORRECTION STEPS

1. Night profiling once a year, preferably at the late summer.

2. Using Depth as the proxy of time (assuming 0.1m/s)

3. \(t_0 = \) when the float starts to ascend, and \(T_s(t_0) = T_w(t_0) \)

4. Estimating the \(T_s \) profile: \(\frac{dT_s(t)}{dt} = k(T_w(t-\Delta t) - T_s(t)) \)

5. Linear regression on \(T_s \) and DC at each channel to retrieve \(A \) and \(B \): \(DC = A + B*Ts \)

6. Use more frequent deep (e.g. drift) measurements to track drift in \(A \)

7. Applying \(A \) and \(B \) to all profiles measured by this float (always estimating \(T_s \) based on Temperature and Depth)
EXAMPLE IN SITU CALCULATION OF A AND B

Using external temperature

Using modeled internal temperature

Color shows time. Some drift apparent.
RESIDUALS OF PREVIOUS FIT ARE TIME-DEPENDENT (I.E. SENSOR DRIFT)

Data from profiles

1000 m drift
EXAMPLE CORRECTED RADIOMETRY PROFILES – GOOD RADIOMETER DATA AT DEEPER DEPTHS

![Graph showing corrected and uncorrected data profiles.](image)